\n\n`f(x) = 1/6 x^3 - 1/2 x^2 - 3/2 x`\nDie Funktion ist ..
\n\n- im Intervall `]-oo;-1]` streng monoton steigend
\n- im Intervall `[-1;3]` streng monoton fallend
\n- im Intervall `[3;oo[` wieder streng monoton steigend
\n
\n\n","thumb":"","links":"","depends":["Allgemeines","Darstellung"],"attachments":[{"type":"file","name":"Abschnittsweise Monotonie.png","file":"Abschnittsweise Monotonie.png","mime":"image/png","href":"data/Mathematik/Funktionen/Monotonie/Abschnittsweise%20Monotonie.png"}],"subject":"Mathematik","chapter":"Funktionen","module":"Analysis","topic":"Monotonie","name":"Monotonie","priority":2,"modified":1620742663721,"author":"Holger Engels","keywords":"Monoton steigend, Monoton fallend, Steigungsverhalten","sgs":38002,"educationalLevel":"10,11","typicalAgeRange":"15-16","educationalContext":"Sekundarstufe I, Sekundarstufe II","_attachments":{"Abschnittsweise Monotonie.png":{"content_type":"image/png","revpos":2,"digest":"md5-cYnaemahdxG8iFT+nnAohQ==","length":48173,"stub":true}}}